
2个回答
展开全部
let
x=tanu
dx=(secu)^2 du
∫ dx/[x(1+x^2)]
=∫ (secu)^2 du/[tanu.(secu)^2]
=∫ du/tanu
=ln|sinu| +C
=ln|x/√(1+x^2)| +C
---------
∫(1->+∞ ) dx/[x(1+x^2)]
=(1/2)ln2 + lim(x->+∞) ln|x/√(1+x^2)|
=(1/2)ln2 + lim(x->+∞) ln| 1/√(1/x^2+1)|
=(1/2)ln2 + 0
=(1/2)ln2
x=tanu
dx=(secu)^2 du
∫ dx/[x(1+x^2)]
=∫ (secu)^2 du/[tanu.(secu)^2]
=∫ du/tanu
=ln|sinu| +C
=ln|x/√(1+x^2)| +C
---------
∫(1->+∞ ) dx/[x(1+x^2)]
=(1/2)ln2 + lim(x->+∞) ln|x/√(1+x^2)|
=(1/2)ln2 + lim(x->+∞) ln| 1/√(1/x^2+1)|
=(1/2)ln2 + 0
=(1/2)ln2

2025-04-21 广告
∫[0->+∞] (sinx)^2/x^2 dx =(1/2)*∫[0->+∞] (1-cos2x)/x^2dx =(1/2)*∫[0->+∞] 1/x^2dx-(1/2)*∫[0->+∞] cos2x/x^2dx =(1/2)*∫[0->...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询