3个回答
展开全部
令x=sint
x:0→1,则t:0→π/2
∫[0:1]√(1-x²)dx
=∫[0:π/2]√(1-sin²t)d(sint)
=∫[0:π/2]cos²tdt
=½∫[0:π/2](1+cos2t)dt
=(½t+¼sin2t)|[0:π/2]
=[½·(π/2)+¼sinπ]-(½·0+¼sin0)
=π/4
该题画图是四分之一圆,可以直接用圆的面积求
另一个求法是三角代换,令x=sinθ,上下限是0到π/2
之后就很一般的求。
扩展资料:
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
用文字表述为:一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
参考资料来源:百度百科-定积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询