n(n-1)(2n-1)/6这是什么公式?
展开全部
1^2+2^2+……+(n-1)^2
=n(n-1)(2n-1)/6
证明:
因为,
1^2+2^2+3^2+...+n^2
=1^2+2^2+……+(n-1)^2 +n^2
=n(n+1)(2n+1)/6
所以,
1^2+2^2+……+(n-1)^2
=1^2+2^2+3^2+...+n^2-n^2
=[n(n+1)(2n+1)/6]-n^2
=n{[(n+1)(2n+1)/6]-6n/6}
=n(2n^2+3n+1-6n)/6
=n(2n^2-3n+1)/6
=n(n-1)(2n-1)/6
=n(n-1)(2n-1)/6
证明:
因为,
1^2+2^2+3^2+...+n^2
=1^2+2^2+……+(n-1)^2 +n^2
=n(n+1)(2n+1)/6
所以,
1^2+2^2+……+(n-1)^2
=1^2+2^2+3^2+...+n^2-n^2
=[n(n+1)(2n+1)/6]-n^2
=n{[(n+1)(2n+1)/6]-6n/6}
=n(2n^2+3n+1-6n)/6
=n(2n^2-3n+1)/6
=n(n-1)(2n-1)/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |