高等数学求极限有哪些方法?
展开全部
1、其一,常用的极限延伸,如:lim(x->0)(1+x)^1/x=e,lim(x->0)sinx/x=1。极限论是数学分析的基础,极限问题是数学分析中的主要问题之一,中心问题有两个:一是证明极限存在,极限问题是数学分析中的困难问题之一;二是求极限的值。
2、其二,罗比达法则,如0/0,oo/oo型,或能化成上述两种情况的类型题目。两个问题有密切的关系:若求出了极限的值,自然极限的存在性也被证明。
3、其三,泰勒展开,这类题目如有sinx,cosx,ln(1+x)等等可以迈克劳林展开为关于x的多项式。反之,证明了存在性,常常也就为计算极限铺平了道路。本文主要概括了人们常用的求极限值的若干方法,更多的方法,有赖于人们根据具体情况进行具体的分析和处理。
4、等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。(x趋近无穷的时候还原成无穷小)。
5、知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |