定积分求详细解析,,,在线等3/6
3个回答
展开全部
∫(0->π/2) √(1-sin2x) dx
=∫(0->π/2) √(sinx-cosx)^2 dx
=∫(0->π/4) √(sinx-cosx)^2 dx + ∫(π/4->π/2) √(sinx-cosx)^2 dx
=∫(0->π/4) (cosx-sinx) dx + ∫(π/4->π/2) (sinx-cosx) dx
=[ sinx +cosx]|(0->π/4) - [ cosx +sinx]|(π/4->π/2)
=(√2 -1) + ( √2 -1)
=2(√2 -1)
=∫(0->π/2) √(sinx-cosx)^2 dx
=∫(0->π/4) √(sinx-cosx)^2 dx + ∫(π/4->π/2) √(sinx-cosx)^2 dx
=∫(0->π/4) (cosx-sinx) dx + ∫(π/4->π/2) (sinx-cosx) dx
=[ sinx +cosx]|(0->π/4) - [ cosx +sinx]|(π/4->π/2)
=(√2 -1) + ( √2 -1)
=2(√2 -1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2019-06-03 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询