高数二重积分求解🙏
展开全部
用直角坐标的话,计算比较难做一点:
∫∫ √(4a² - x² - y²) dxdy
= ∫(- 2a→2a) dx ∫(- √(4a² - x²)→√(4a² - x²)) √(4a² - x² - y²) dy
= 4∫(0→2a) dx ∫(0→√(4a² - x²)) √(4a² - x² - y²) dy、对称性
= ...慢慢积分吧
= 16/3 * πa³ = 144π
==> a = 3
可用极坐标:
∫∫ √(4a² - x² - y²) dxdy
= ∫∫ √(4a² - r²) * r drdθ:0 ≤ θ ≤ 2π、0 ≤ r ≤ 2a
= 2π(- 1/2)∫ √(4a² - r²) d(4a² - r²)
= - π * (2/3)(4a² - r²)^(3/2):0 ≤ r ≤ 2a
= - π * (2/3)(0) + π * (2/3)(4a²)^(3/2)
= π * 2/3 * 8a³
于是16/3 * πa³ = 144π
a³ = 27
得a = 3
注意a是圆的半径其中一部分,其值必定大于等于0
0
∫∫ √(4a² - x² - y²) dxdy
= ∫(- 2a→2a) dx ∫(- √(4a² - x²)→√(4a² - x²)) √(4a² - x² - y²) dy
= 4∫(0→2a) dx ∫(0→√(4a² - x²)) √(4a² - x² - y²) dy、对称性
= ...慢慢积分吧
= 16/3 * πa³ = 144π
==> a = 3
可用极坐标:
∫∫ √(4a² - x² - y²) dxdy
= ∫∫ √(4a² - r²) * r drdθ:0 ≤ θ ≤ 2π、0 ≤ r ≤ 2a
= 2π(- 1/2)∫ √(4a² - r²) d(4a² - r²)
= - π * (2/3)(4a² - r²)^(3/2):0 ≤ r ≤ 2a
= - π * (2/3)(0) + π * (2/3)(4a²)^(3/2)
= π * 2/3 * 8a³
于是16/3 * πa³ = 144π
a³ = 27
得a = 3
注意a是圆的半径其中一部分,其值必定大于等于0
0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询