高数二重积分求解🙏
1个回答
展开全部
用直角坐标的话,计算比较难做一点:
∫∫ √(4a² - x² - y²) dxdy
= ∫(- 2a→2a) dx ∫(- √(4a² - x²)→√(4a² - x²)) √(4a² - x² - y²) dy
= 4∫(0→2a) dx ∫(0→√(4a² - x²)) √(4a² - x² - y²) dy、对称性
= ...慢慢积分吧
= 16/3 * πa³ = 144π
==> a = 3
可用极坐标:
∫∫ √(4a² - x² - y²) dxdy
= ∫∫尘慎猜 √(4a² - r²) * r drdθ:0 ≤ θ ≤ 2π、0 ≤ r ≤ 2a
= 2π(- 1/2)∫ √(4a² - r²) d(4a² - r²)
= - π * (2/3)(4a² - r²)^(3/2):0 ≤ r ≤ 2a
= - π * (2/3)(0) + π * (2/3)(4a²)^(3/2)
= π * 2/3 * 8a³
于是16/3 * πa³ = 144π
a³ = 27
得a = 3
注意a是圆的半孝吵径其中一部分派型,其值必定大于等于0
0
∫∫ √(4a² - x² - y²) dxdy
= ∫(- 2a→2a) dx ∫(- √(4a² - x²)→√(4a² - x²)) √(4a² - x² - y²) dy
= 4∫(0→2a) dx ∫(0→√(4a² - x²)) √(4a² - x² - y²) dy、对称性
= ...慢慢积分吧
= 16/3 * πa³ = 144π
==> a = 3
可用极坐标:
∫∫ √(4a² - x² - y²) dxdy
= ∫∫尘慎猜 √(4a² - r²) * r drdθ:0 ≤ θ ≤ 2π、0 ≤ r ≤ 2a
= 2π(- 1/2)∫ √(4a² - r²) d(4a² - r²)
= - π * (2/3)(4a² - r²)^(3/2):0 ≤ r ≤ 2a
= - π * (2/3)(0) + π * (2/3)(4a²)^(3/2)
= π * 2/3 * 8a³
于是16/3 * πa³ = 144π
a³ = 27
得a = 3
注意a是圆的半孝吵径其中一部分派型,其值必定大于等于0
0
上海桦明教育科技
2024-12-15 广告
2024-12-15 广告
考研通常是在大四进行。大学生一般会选择在大四上学期参加12月份的全国硕士研究生统一招生考试,如果顺利通过考试,次年9月即可入读研究生。当然,也有部分同学会选择在大三期间开始备考,提前为考研做好知识和心理准备。但这并不意味着他们能在大三就参加...
点击进入详情页
本回答由上海桦明教育科技提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询