展开全部
(3+x)/(6+x) = 1 - 3/(6+x)
let
1/y = 3/(6+x)
lim(x->+∞) [(3+x)/(6+x) ]^[(x-1)/2]
=lim(x->+∞) [(3+x)/(6+x) ]^(x/2)
=lim(x->+∞) [1- 3/(6+x) ]^(x/2)
=lim(y->+∞) [1- 1/y ]^[(3y-6)/2]
=lim(y->+∞) [1- 1/y ]^(3y/2)
=e^(-3/2)
let
1/y = 3/(6+x)
lim(x->+∞) [(3+x)/(6+x) ]^[(x-1)/2]
=lim(x->+∞) [(3+x)/(6+x) ]^(x/2)
=lim(x->+∞) [1- 3/(6+x) ]^(x/2)
=lim(y->+∞) [1- 1/y ]^[(3y-6)/2]
=lim(y->+∞) [1- 1/y ]^(3y/2)
=e^(-3/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询