勾股定理的逆定理证明?
展开全部
勾股定理的逆定理证明
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
勾股定理的逆定理是判断三角形是否为锐角、直角或钝角三角形的一个简单的方法。若c为最长边,且a_+b_=c_,则ΔABC是直角三角形;如果a_+b_>c_,则ΔABC是锐角三角形;如果a_+b_
根据余弦定理,在△ABC中,cosC=(a_+b_-c_)÷2ab。
由于a_+b_=c_,故cosC=0;
因为0°<∠C<180°,所以∠C=90°。(证明完毕)
已知在△ABC中,,求证∠C=90°
证明:作AH⊥BC于H
⑴若∠C为锐角,设BH=y,AH=x
得x_+y_=c_,
又∵a_+b_=c_,
∴a_+b_=x_+y_(A)
但a>y,b>x,∴a_+b_>x_+y_(B)
(A)与(B)矛盾,∴∠C不为锐角
⑵若∠C为钝角,设HC=y,AH=x
得a_+b_=c_=x_+(a+y)_=x_+y_+2ay+a_
∵x_+y_=b_,
得a_+b_=c_=a_+b_+2ay
2ay=0
∵a≠0,∴y=0
这与∠C是钝角相矛盾,∴∠C不为钝角
综上所述,∠C必为直角
北京埃德思远电气技术咨询有限公司
2021-11-22 广告
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
2020-04-08
展开全部
证明方法如下,
设三条边分别为a、b、c,对应的角分别为角A、角B、角C
过C点做c边的垂线,即三角形的高,垂足为D,设此高长度为h
则三角形的面积S=hc/2
因为BD=根号(a*a-h*h) AD=根号(b*b-h*h)
所以AB=BD+AD=根号(a*a-h*h)+根号(b*b-h*h)
因为AB=c
所以c=根号(a*a-h*h)+根号(b*b-h*h)
两边平方得:
c*c=(a*a-h*h)+(b*b-h*h)+2*根号[a*a*b*b-(a*a+b*b)*h*h+h*h*h*h]
因为c*c=a*a+b*b,代入上式得:
2*根号[a*a*b*b-c*c*h*h+h*h*h*h]=2*h*h
两边平方得:
a*a*b*b-c*c*h*h+h*h*h*h=h*h*h*h
所以a*a*b*b=c*c*h*h
两边开方得:
a*b=c*h
因为三角形面积S=c*h/2=a*b/2
因为a、b为三角形两条边,
所以只有直角三角形才有可能
即从c*c=a*a+b*b 推出为直角三角形
设三条边分别为a、b、c,对应的角分别为角A、角B、角C
过C点做c边的垂线,即三角形的高,垂足为D,设此高长度为h
则三角形的面积S=hc/2
因为BD=根号(a*a-h*h) AD=根号(b*b-h*h)
所以AB=BD+AD=根号(a*a-h*h)+根号(b*b-h*h)
因为AB=c
所以c=根号(a*a-h*h)+根号(b*b-h*h)
两边平方得:
c*c=(a*a-h*h)+(b*b-h*h)+2*根号[a*a*b*b-(a*a+b*b)*h*h+h*h*h*h]
因为c*c=a*a+b*b,代入上式得:
2*根号[a*a*b*b-c*c*h*h+h*h*h*h]=2*h*h
两边平方得:
a*a*b*b-c*c*h*h+h*h*h*h=h*h*h*h
所以a*a*b*b=c*c*h*h
两边开方得:
a*b=c*h
因为三角形面积S=c*h/2=a*b/2
因为a、b为三角形两条边,
所以只有直角三角形才有可能
即从c*c=a*a+b*b 推出为直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
反证法就行了。
分角C是锐角和钝角讨论,做一条a边上的高就Ok。注意:证逆定理的证明过程中,勾股定理仍然是可以用的,主要也是用勾股定理来证明。
分角C是锐角和钝角讨论,做一条a边上的高就Ok。注意:证逆定理的证明过程中,勾股定理仍然是可以用的,主要也是用勾股定理来证明。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询