无穷级数定积分求解,这部是怎么来的?求详细过程,第二张图做到那步就写不下去了
展开全部
S(x) = ∑<n=0,∞>(n+1)^2 x^n
∫<0, x> S(t)dt = ∫<0, x> ∑<n=0,∞>(n+1)^2 t^n dt
= ∑<n=0,∞>∫<0, x>(n+1)^2 t^n dt
= ∑<n=0,∞>(n+1)∫<0, x>(n+1) t^n dt
则 ∫<0, x> S(t)dt = ∑<n=0,∞>(n+1)x^(n+1)
= ∑<n=0,∞>(n+2)x^(n+1) - ∑<n=0,∞>x^(n+1)
前项再积分求和,后项是 x/(1-x), |x| < 1.
∫<0, x> S(t)dt = ∫<0, x> ∑<n=0,∞>(n+1)^2 t^n dt
= ∑<n=0,∞>∫<0, x>(n+1)^2 t^n dt
= ∑<n=0,∞>(n+1)∫<0, x>(n+1) t^n dt
则 ∫<0, x> S(t)dt = ∑<n=0,∞>(n+1)x^(n+1)
= ∑<n=0,∞>(n+2)x^(n+1) - ∑<n=0,∞>x^(n+1)
前项再积分求和,后项是 x/(1-x), |x| < 1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询