在高数不定积分中,运用第二类换元法时,dx是如何求得的呀?求指导

 我来答
五从丹脱蕤
2020-03-12 · TA获得超过3.3万个赞
知道小有建树答主
回答量:1.1万
采纳率:33%
帮助的人:746万
展开全部
3.
利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式
x
=
φ(t)。两边对自变量微分得dx=φ’(t)dt.
此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。
下面我简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式√(ax+b),可直接令
t
=√(ax+b);
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:
被积函数含根式√(a^2-x^2),令
x
=
asint
被积函数含根式√(a^2+x^2),令
x
=
atant
被积函数含根式√(x^2-a^2),令
x
=
asect
注:记住三角形示意图可为变量还原提供方便。
还有几种代换形式:
(3)倒代换(即令
x
=
1/t):设m,n
分别为被积函数的分子、分母关于x
的最高次数,当
n-m>1时,用倒代换可望成功;
(4)指数代换:适用于被积函数由指数
a^x
所构成的代数式
(5)万能代换(半角代换):被积函数是三角函数有理式,可令
t
=
tan(x/2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式