设函数f(x)在上[0,a]连续,在(0,a)内可导,且f(a)=0,证明:在(0,a)中至少存在一点ξ, 使3f(ξ)+ξf'(x)=0

 我来答
是玉花法丑
2019-12-26 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:2174万
展开全部

g(x)=f(x)*x^3
则有:g'(x)=f(x)*3*x^2+f'(x)*x^3
因为:g(0)=g(a)=0
根据中值定理,在(0,a)中存在ξ使得g'(ξ)=0
即:f(ξ)*3*ξ^2+f'(ξ)*ξ^3=0
所以:f(ξ)*3+f'(ξ)*ξ=0
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式