三角形的中位线定理?
1个回答
展开全部
(1)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.
(2)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(3)逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
(4)逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
三角形中位线定理证明:
如图(自己画个图O(∩_∩)O),已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2
证明:过C作AB的平行线交DE的延长线于F点。
∵CF∥AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∵D为AB中点
∴AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF∥BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.
(2)三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.
(3)逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线。
(4)逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线。
三角形中位线定理证明:
如图(自己画个图O(∩_∩)O),已知△ABC中,D,E分别是AB,AC两边中点。
求证DE平行且等于BC/2
证明:过C作AB的平行线交DE的延长线于F点。
∵CF∥AD
∴∠A=∠ACF
∵AE=CE、∠AED=∠CEF
∴△ADE≌△CFE
∴AD=CF
∵D为AB中点
∴AD=BD
∴BD=CF
∴BCFD是平行四边形
∴DF∥BC且DF=BC
∴DE=BC/2
∴三角形的中位线定理成立.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询