有关数学对数的问题。
1个回答
展开全部
对数:
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M
,
log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M
,
log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M
,
log(a^n)M^m=(m/n)log(a)M
4.log(以
n次根号下的a
为底)(以
n次根号下的M
为真数)=log(a)M
,
log(以
n次根号下的a
为底)(以
m次根号下的M
为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
当a>0且a≠1时,M>0,N>0,那么:
(1)log(a)(MN)=log(a)(M)+log(a)(N);
(2)log(a)(M/N)=log(a)(M)-log(a)(N);
(3)log(a)(M^n)=nlog(a)(M)
(n∈R)
(4)log(a^n)(M)=1/nlog(a)(M)(n∈R)
(5)换底公式:log(A)M=log(b)M/log(b)A
(b>0且b≠1)
(6)a^(log(b)n)=n^(log(b)a)
证明:
设a=n^x则a^(log(b)n)=(n^x)^log(b)n=n^(x·log(b)n)=n^log(b)(n^x)=n^(log(b)a)
(7)对数恒等式:a^log(a)N=N;
log(a)a^b=b
(8)由幂的对数的运算性质可得(推导公式)
1.log(a)M^(1/n)=(1/n)log(a)M
,
log(a)M^(-1/n)=(-1/n)log(a)M
2.log(a)M^(m/n)=(m/n)log(a)M
,
log(a)M^(-m/n)=(-m/n)log(a)M
3.log(a^n)M^n=log(a)M
,
log(a^n)M^m=(m/n)log(a)M
4.log(以
n次根号下的a
为底)(以
n次根号下的M
为真数)=log(a)M
,
log(以
n次根号下的a
为底)(以
m次根号下的M
为真数)=(n/m)log(a)M
5.log(a)b×log(b)c×log(c)a=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询