定积分从一个区间换到另一个区间?
这个题他的区间是怎么来的,为什么要令x=二分之派-t,还有函数怎么变了。数学小白希望各位大佬解答一下谢谢!!!我会积极采纳...
这个题他的区间是怎么来的,为什么要令x=二分之派-t,还有函数怎么变了。数学小白希望各位大佬解答一下谢谢!!!我会积极采纳
展开
展开全部
I = 4∫[0, π]cos^4 x dx
= 8∫[0, π/2]cos^4 x dx
x = π/2 - t
dx = -dt
I = 8∫[π/2, 0] cos^4 (π/2 - t) d(π/2 - t)
= 8∫[0, π/2] sin^4 t dt
= 8∫[0, π/2] sin^4 x dx
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
展开全部
I = 4∫[0, π]cos^4 x dx
= 8∫[0, π/2]cos^4 x dx (by symmetry)
x = π/2 - t
dx = -dt
I = 8∫[π/2, 0] cos^4 (π/2 - t) d(π/2 - t)
= 8∫[0, π/2] sin^4 t dt (co-function property and switching lower limit and upper limit)
= 8∫[0, π/2] sin^4 x dx (change t to x)
= 8∫[0, π/2]cos^4 x dx (by symmetry)
x = π/2 - t
dx = -dt
I = 8∫[π/2, 0] cos^4 (π/2 - t) d(π/2 - t)
= 8∫[0, π/2] sin^4 t dt (co-function property and switching lower limit and upper limit)
= 8∫[0, π/2] sin^4 x dx (change t to x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询