初二数学几何题
展开全部
1)证明:
∵∠CEF=90°
∴∠AEF+∠AFE=∠AEF+∠CED=90°
∴∠AFE=∠CED
∵∠A=∠D
∴△AEF∽△DCE
∴EF/CE
=AF
/DE
∵AE
=DE
∴EF/CE
=AF
/AE
∵∠A=∠FEC
∴△AEF∽ECF(两边成比例,夹角相等)
2)设AB/BC=k,是否存在这样的k值,由(1)得
角EFC=角EFA
因为角EFC不是直角
所以角EFA不可能等于角FCB
若△AEF与△BFC相似
则角CFB=角EFC=角EFA=60度
设AF=a
BC=2AE=2√3a
FB=0.5FC=EF=2a
AB=3a
K=AB/BC=√3/2
∵∠CEF=90°
∴∠AEF+∠AFE=∠AEF+∠CED=90°
∴∠AFE=∠CED
∵∠A=∠D
∴△AEF∽△DCE
∴EF/CE
=AF
/DE
∵AE
=DE
∴EF/CE
=AF
/AE
∵∠A=∠FEC
∴△AEF∽ECF(两边成比例,夹角相等)
2)设AB/BC=k,是否存在这样的k值,由(1)得
角EFC=角EFA
因为角EFC不是直角
所以角EFA不可能等于角FCB
若△AEF与△BFC相似
则角CFB=角EFC=角EFA=60度
设AF=a
BC=2AE=2√3a
FB=0.5FC=EF=2a
AB=3a
K=AB/BC=√3/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询