探究圆锥的曲线的性质
1个回答
展开全部
圆锥曲线统一定义:(第二定义)
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的集合。而根据e的大小分为椭圆,抛物线,双曲线。圆可看作e为0的曲线。
1。0<e<1为椭圆,直角坐标系中标准方程为:
x^2/a^2+y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2+y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经椭圆反射必过另一焦点
2。e=1为抛物线,直角坐标系中标准方程为:
y^2=2px,对称轴为x轴,焦点(p/2,0),准线x=-p/2
x^2=2py,对称轴为y轴,焦点,(0,p/2)准线y=-p/2
光学性质:任意平行对称轴的光线经抛物线反射必过焦点(或反向延长线过焦点)
3。1<e为双曲线,直角坐标系中标准方程为:
x^2/a^2-y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2-y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
c^2=b^2+a^2
双曲线上任意一点到两焦点距离之差的绝对值为2a(定值),且小于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经双曲线反射其反向延长线必过另一焦点
平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的集合。而根据e的大小分为椭圆,抛物线,双曲线。圆可看作e为0的曲线。
1。0<e<1为椭圆,直角坐标系中标准方程为:
x^2/a^2+y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2+y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
a^2=b^2+c^2
椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经椭圆反射必过另一焦点
2。e=1为抛物线,直角坐标系中标准方程为:
y^2=2px,对称轴为x轴,焦点(p/2,0),准线x=-p/2
x^2=2py,对称轴为y轴,焦点,(0,p/2)准线y=-p/2
光学性质:任意平行对称轴的光线经抛物线反射必过焦点(或反向延长线过焦点)
3。1<e为双曲线,直角坐标系中标准方程为:
x^2/a^2-y^2/b^2=1(0<b<a),焦点在x轴上,焦点(c,0)(-c,0)准线x=+-a^2/c,e=c/a
y^2/a^2-y^2/b^2=1(0<b<a),焦点在y轴上,焦点(0,c)(0。-c)准线y=+-a^2/c,e=c/a
c^2=b^2+a^2
双曲线上任意一点到两焦点距离之差的绝对值为2a(定值),且小于焦距2c,这是第一定义
光学性质:过焦点的任意一条光线经双曲线反射其反向延长线必过另一焦点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询