已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.
1个回答
展开全部
只要找出一个非零解满足(E-AB)Y = 0,就可以说明与题设矛盾,
假设E-BA不可逆,则(E-BA)X = 0 有非零解,则可得 X=BAX.
又 (E-AB)AX = AX - ABAX = AX-AX = 0,即AX为(E-AB)Y = 0的一个非零解,由此可证
也有人是这么解得,(好强大的说)
因为E-AB可逆,则存在可逆阵C使得C(E-AB)=E,则C-CAB=E,
左乘B右乘A,有BCA-BCABA=BA
有BCA=(E+BCA)BA推出(BCA+E)-E=(E+BCA)BA,整理有(BCA+E)(E-BA)=E,根所定义知E-BA可逆
假设E-BA不可逆,则(E-BA)X = 0 有非零解,则可得 X=BAX.
又 (E-AB)AX = AX - ABAX = AX-AX = 0,即AX为(E-AB)Y = 0的一个非零解,由此可证
也有人是这么解得,(好强大的说)
因为E-AB可逆,则存在可逆阵C使得C(E-AB)=E,则C-CAB=E,
左乘B右乘A,有BCA-BCABA=BA
有BCA=(E+BCA)BA推出(BCA+E)-E=(E+BCA)BA,整理有(BCA+E)(E-BA)=E,根所定义知E-BA可逆
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询