求下列幂级数的和函数 ∑(n=1,∞) x^n/n(n+1)
2个回答
展开全部
令f(x)=∑x^n/n(n+1)
则f'(x)=∑x^(n-1)/(n+1)=1/x²∑x^(n+1)/(n+1)
再记g(x)=∑x^(n+1)/(n+1)
则g'(x)=∑x^n=x/(1-x)=-1+1/(1-x), 收敛域为|x|<1
积分得:g(x)=C-x-ln(1-x)
因为g(0)=0, 故有C=0, 得g(x)=-x-ln(1-x)
故有f'(x)=1/x²g(x)=-1/x-1/x²ln(1-x)
积分得:f(x)=C-ln|x|-∫1/x²ln(1-x)dx
=C-ln|x|-[-1/xln(1-x)-∫1/x(1-x)dx]
=C-ln|x|+1/xln(1-x)+ln|x|-ln(1-x)
=C+(1/x)ln(1-x)-ln(1-x)
由于f(0+)=0, 得C-1=0, 即C=1
从而f(x)=1+(1/x)ln(1-x)-ln(1-x)
则f'(x)=∑x^(n-1)/(n+1)=1/x²∑x^(n+1)/(n+1)
再记g(x)=∑x^(n+1)/(n+1)
则g'(x)=∑x^n=x/(1-x)=-1+1/(1-x), 收敛域为|x|<1
积分得:g(x)=C-x-ln(1-x)
因为g(0)=0, 故有C=0, 得g(x)=-x-ln(1-x)
故有f'(x)=1/x²g(x)=-1/x-1/x²ln(1-x)
积分得:f(x)=C-ln|x|-∫1/x²ln(1-x)dx
=C-ln|x|-[-1/xln(1-x)-∫1/x(1-x)dx]
=C-ln|x|+1/xln(1-x)+ln|x|-ln(1-x)
=C+(1/x)ln(1-x)-ln(1-x)
由于f(0+)=0, 得C-1=0, 即C=1
从而f(x)=1+(1/x)ln(1-x)-ln(1-x)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |