大数据主要学什么?
6个回答
2021-09-18 · 每时每课,给你新机会!
南京课工场大数据学校
北大青鸟中博软件学院成立于2003年,北大青鸟中博依托北京大学雄厚的教育资源,开启了培养高端IT人才的时代。建校十余年来,始终坚持以实践为基础,就业为导向,不忘初心。
向TA提问
关注
展开全部
大数据目前发展是比较好的,特别是在鸿蒙发布后物联网时代的到来下,大数据相关岗位将会更多。想要转行的话,大数据的确是个很好的方向。既然想要转行大数据,那么肯定要具备大数据的相关知识与技能。
这里介绍一下大数据要学习和掌握的知识与技能:
①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。
②spark:专为大规模数据处理而设计的快速通用的计算引擎。
③SSM:常作为数据源较简单的web项目的框架。
④Hadoop:分布式计算和存储的框架,需要有java语言基础。
⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。
⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
2020-11-23 · 百度认证:南京课工场信息技术官方账号
关注
展开全部
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2020-11-19 · 大数据人才培养的机构
加米谷大数据科技
成都加米谷大数据科技有限公司是一家专注于大数据人才培养的机构。公司由来自华为、京东、星环、勤智等国内知名企业的多位技术大牛联合创办。面向社会提供大数据、人工智能等前沿技术的培训业务。
向TA提问
关注
展开全部
静态网页基础(HTML+CSS)
主要技术包括:html常用标签bai、CSS常见布局、样式、定位等、静态页面的设计制作方式等。
JavaSE+JavaWeb
主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)、JDBC、线程、反射、Socket编程、枚举、泛型、设计模式。
前端框架
主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui。
企业级开发框架
主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webService CXF、Tomcat集群和热备 、MySQL读写分离
初识大数据
主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
大数据数据库
主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
实时数据采集
主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
SPARK数据分析
主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
主要技术包括:html常用标签bai、CSS常见布局、样式、定位等、静态页面的设计制作方式等。
JavaSE+JavaWeb
主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)、JDBC、线程、反射、Socket编程、枚举、泛型、设计模式。
前端框架
主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui。
企业级开发框架
主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webService CXF、Tomcat集群和热备 、MySQL读写分离
初识大数据
主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Java操作MapReduce、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
大数据数据库
主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
实时数据采集
主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
SPARK数据分析
主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询