(1+x)^1/x的极限为什么是e?

 我来答
小熊生活百科
高能答主

2021-11-12 · 小熊帮你解决生活中的各种问题
小熊生活百科
采纳数:332 获赞数:50262

向TA提问 私信TA
展开全部

将重要极限limx→∞(1+1/x)^x=e为推广形式limx→∞(1+u(x)^v(x)(u(x)→的0,v(x)→∞极限。

lim x→∞,(1+x)^(1/x) 

=lim x→∞,e^[ln((1+x)^(1/x))] 

=lim x→∞,e^[(1/x)×ln(1+x)] 

其中e的指数部分lim x→∞,(1/x)×ln(1+x)

=lim x→∞,[ln(1+x)]/x ∞/∞型,

使用洛必达法则,上下同时求导,得到 lim x→∞,[1/(1+x)]/1=0 

所以e的指数部分极限是0。

原式=limx->0(e^x/x - 1/x)

=limx->0(e^x - 1)/x

=1

极限的求法:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式