sin cos tan转换公式是什么?
sin cos tan转换公式是tan(x)=sin(x)/cos(x)。
同角三角函数的基本关系式介绍
1、倒数关系:
tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1。
2、关系:
sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα。
3、平方关系:
sin^2(α)+cos^2(α)=1。
1+tan^2(α)=sec^2(α)。
1+cot^2(α)=csc^2(α)。
三角函数主要运用方法:
三角函数以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
sin cos tan转换公式是tan(x)=sin(x)/cos(x)。
同角三角函数的基本关系式介绍
1、倒数关系:
tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1
2、的关系:
sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα
3、平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
三角函数主要运用方法:
三角函数以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。