数列极限的 ε—n定义如下:
对任意的ε>0(这里ε是一个任意事先给定的正实数),都存在一个自然数N(这个N一般来说是依赖于ε的,即给一个ε,就至少有一个N与之对应),使得对于任意的n>N都有|an-a|<ε,就是说无穷数列从第N项开始都在a-ε到a+ε之间,这时我们称数列{an}有极限a。
数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。
数列极限存在的条件
单调有界定理 在实数系中,单调有界数列必有极限。
致密性定理 任何有界数列必有收敛的子列。