数列极限的 ε—n定义是什么?

 我来答
生活小能手145
2021-11-14 · 极简生活,治愈生活。
生活小能手145
采纳数:507 获赞数:23713

向TA提问 私信TA
展开全部

数列极限的 ε—n定义如下:

对任意的ε>0(这里ε是一个任意事先给定的正实数),都存在一个自然数N(这个N一般来说是依赖于ε的,即给一个ε,就至少有一个N与之对应),使得对于任意的n>N都有|an-a|<ε,就是说无穷数列从第N项开始都在a-ε到a+ε之间,这时我们称数列{an}有极限a。

数列的极限问题是我们学习的一个比较重要的部分,同时,极限的理论也是高等数学的基础之一。数列极限的问题作为微积分的基础概念,其建立与产生对微积分的理论有着重要的意义。

数列极限存在的条件

单调有界定理 在实数系中,单调有界数列必有极限。

致密性定理 任何有界数列必有收敛的子列。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式