x|cosx|在0到n派的定积分怎么计算? 10
展开全部
换一种思路:
Substituting y = x - nπ:
∫[nπ,nπ+π] x|cosx| dx
= ∫[0,π] (y+nπ)|cosy| dy
= ∫[0,π] y|cosy| dy + ∫[0,π] nπ|cosy| dy
= (2n+1)π
Σ[i = 0, ..., n-1] (2i+1)π = π + 3π + ... + (2n-1)π = n^2 π
Substituting y = x - nπ:
∫[nπ,nπ+π] x|cosx| dx
= ∫[0,π] (y+nπ)|cosy| dy
= ∫[0,π] y|cosy| dy + ∫[0,π] nπ|cosy| dy
= (2n+1)π
Σ[i = 0, ..., n-1] (2i+1)π = π + 3π + ... + (2n-1)π = n^2 π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询