等比数列性质
4个回答
展开全部
等比数列性质:在等比数列{an}{an}中,若m+n=p+q=2k(m,n,p,q,k∈N_)m+n=p+q=2k(m,n,p,q,k∈N_),则am_an=ap_aq=a2kam_an=ap_aq=ak2。
《等比数列的性质》是连南瑶族自治县民族高级中学提供的微课课程,主讲老师是潘卫萍。
这个微课的内容首先是给出具体的等比数列来复习等比数列的定义、通项公式、等比中项的公式,然后让学生通过简单的运算。
由运算的结果得出等比数列的性质,小结时还把等差数列与等比数列从定义、通项公式、中项、重要性质这四个方面以表格的形式给出
《等比数列的性质》是连南瑶族自治县民族高级中学提供的微课课程,主讲老师是潘卫萍。
这个微课的内容首先是给出具体的等比数列来复习等比数列的定义、通项公式、等比中项的公式,然后让学生通过简单的运算。
由运算的结果得出等比数列的性质,小结时还把等差数列与等比数列从定义、通项公式、中项、重要性质这四个方面以表格的形式给出
北京埃德思远电气技术咨询有限公司
2023-08-25 广告
2023-08-25 广告
整定计算的工作步骤,大致如下:1.确定整定方案所适应的系统情况。2.与调度部门共同确定系统的各种运行方式。3.取得必要的参数与资料(保护图纸,设备参数等)。4.结合系统情况,确定整定计算的具体原则。5.进行短路计算。6.进行保护的整定计算及...
点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
展开全部
等比数列的性质:
(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列.
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3… {can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2.
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比.
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数.
(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
(8) 数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方.
(9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列.
等比数列是说如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中an中的每一项均不为0。注:q=1 时,an为常数列。
(1)若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列.
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3… {can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2.
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比.
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数.
(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
(8) 数列{An}是等比数列,An=pn+q,则An+K=pn+K也是等比数列,在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方.
(9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列.
等比数列是说如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中an中的每一项均不为0。注:q=1 时,an为常数列。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
性质
①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
等比数列的性质是什么
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询