定积分上限的π是怎么变到π/2的?
3个回答
展开全部
let
u=π-x
du=-dx
x=π/2, u=π/2
x=π , u=0
∫(0->π) √[(sinx)^2-(sinx)^4 ] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(π/2->π) √[(sinx)^2-(sinx)^4 ] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(π/2->0) √[(sinu)^2-(sinu)^4 ] (-du)
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(0->π/2) √[(sinu)^2-(sinu)^4 ] du
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx
=2∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx
u=π-x
du=-dx
x=π/2, u=π/2
x=π , u=0
∫(0->π) √[(sinx)^2-(sinx)^4 ] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(π/2->π) √[(sinx)^2-(sinx)^4 ] dx
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(π/2->0) √[(sinu)^2-(sinu)^4 ] (-du)
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(0->π/2) √[(sinu)^2-(sinu)^4 ] du
=∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx +∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx
=2∫(0->π/2) √[(sinx)^2-(sinx)^4 ] dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询