向量a‖b的公式有哪些?

 我来答
笑九社会小达人
高能答主

2022-04-15 · 专注社会民生知识解答。
笑九社会小达人
采纳数:742 获赞数:53133

向TA提问 私信TA
展开全部

向量a‖b的公式有:x1x2+y1y2=0。

平面向量的公式包括向量加法的运算律:a+b=b+a、(a+b)+c=a+(b+c)。

对于两个向量a(向量a≠向量0),向量b,当有一个实数λ,使向量b=λ向量a(记住向量是有方向的)则向量a‖向量b。反之,当向量a‖向量b时,有且只有一个实数λ,能使向量b=λ向量a。

数量积的性质:

已知两个非零向量a、b,那么a·b=|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积,记作a·b。零向量与任意向量的数量积为0。数量积a·b的几何意义是:a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。

小枫带你看生活
高能答主

2022-04-16 · 享受生活中的美好瞬间!
小枫带你看生活
采纳数:994 获赞数:69798

向TA提问 私信TA
展开全部

向量a‖b的公式如下:

1、内积就是:ab=丨a丨丨b丨cosα(注意:内积没有方向,叫做点乘)。

2、外积就是:a×b=丨a丨丨b丨sinα(注意:外积是有方向的)。

3、向量的平行公式是:a//b:a1/b1=a2/b2或者是a1b1=a2b2或者是a=λb,而λ是一个常数。

向量的特点

1、有序:向量的元素有对应的位置(即下标),根据向量中元素的下标可以访问特定元素。

2、元素类型统一:常用的数值型向量、字符型向量、逻辑型向量(向量中不可混杂不同类型的元素)。

3、其实向量就是一个数学名称,力就是向量,力是向量中的一部分,凡是有大小有方向的量都是向量,力只是向量的具体表现形式——具体的事例。对于任何不理解向量的地方都可以对应着力来理解。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
非酋肉嘎嘎2b
2023-07-21 · TA获得超过121个赞
知道小有建树答主
回答量:2920
采纳率:100%
帮助的人:35.9万
展开全部
当向量a与向量b平行(平行向量)时,我们有以下公式:

1. 等式判定法:如果向量a与向量b平行,则它们的比值为常数。即 a = k * b 或 b = k * a,其中k是一个非零常数。

2. 叉乘为零:向量a与向量b平行时,它们的叉乘(向量积)结果为零。即 a × b = 0 或 b × a = 0。

3. 向量间夹角为0度:向量a与向量b平行时,它们的夹角为0度。即 cosθ = 1,其中θ是向量a和向量b之间的夹角。

注意:在等式判定法中,k可以是正数、负数或零。如果k为正数,则向量a和向量b同向;如果k为负数,则向量a和向量b反向;如果k为零,则向量a和向量b为零向量。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
云剖N
2023-07-15 · TA获得超过183个赞
知道大有可为答主
回答量:3762
采纳率:0%
帮助的人:80.8万
展开全部

1. 知识点定义来源和讲解:

在向量的运算中,当两个向量a和b平行时,我们称向量a与向量b是平行的,记作a‖b。有些情况下,我们需要通过已知的条件计算平行向量a和b的具体数值。下面将讲解几个常用的公式。

2. 知识点运用:

平行向量的公式可以帮助我们求解平行向量的具体数值。通过已知条件,我们可以利用这些公式来计算平行向量的分量或模长。

3. 知识点例题讲解:

问题:已知向量a = (3, -2) 平行于向量b = (4, 7),通过已知条件求解向量a的倍数k。

解答:根据向量平行的定义,我们可以利用平行向量的公式来计算k。

首先,我们知道向量a与向量b平行,所以它们的方向相同,即它们的对应分量的比例相等。因此,我们可以建立如下等式:

3 / 4 = -2 / 7

接下来,我们可以通过交叉相乘法则解上述等式,得到:

3 * 7 = 4 * (-2)

21 = -8

由于等式不成立,我们得出结论:向量a = (3, -2) 不与向量b = (4, 7) 平行。

所以,无法通过已知条件求解向量a的倍数k。

总结:

在向量运算中,当两个向量a和b平行时,我们称向量a与向量b是平行的,记作a‖b。对于平行向量,我们可以使用平行向量的公式来求解其具体数值。通过对向量分量的比例关系的分析,我们可以建立等式来求解平行向量的倍数。然而,当已知条件不满足等式关系时,无法通过已知条件求解平行向量的具体倍数。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
寻找生活独一无二
2023-07-28 · 超过17用户采纳过TA的回答
知道答主
回答量:349
采纳率:0%
帮助的人:9.1万
展开全部
以下是几个与这两个向量有关的常见公式:

向量加法公式: a + b = (a1 + b1, a2 + b2, a3 + b3, ...)

向量减法公式: a - b = (a1 - b1, a2 - b2, a3 - b3, ...)

向量数量积公式(点积): a · b = a1 * b1 + a2 * b2 + a3 * b3 + ...

向量向量积公式(叉积)(适用于三维向量): a × b = (a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1 * b2 - a2 * b1)

向量模长公式: ||a|| = √(a1^2 + a2^2 + a3^2 + ...)

这些公式是在基本向量运算中常用的,可以帮助计算和操作向量。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式