大数据的特征有哪些?
4个回答
展开全部
简单地讲,可以分为三类:1)结构化数据通常是指用关系数据库方式记录的数据,数据按表和字段进行存储,字段之间相互独立。2)半结构化数据是指以自描述的文本方式记录的数据,由于自描述数据无需满足关系数据库上那种非常严格的结构和关系,在使用过程中非常方便。很多网站和应用访问日志都采用这种格式,网页本身也是这种格式。3)非结构化数据通常是指语音、图片、视频等格式的数据。这类数据一般按照特定应用格式进行编码,数据量非常大,且不能简单地转换成结构化数据。如果你想了解更多的分类方式,建议参考
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那么大数据的特点有哪些?1.数据量大 2.规定快速响应,销售市场变化快,规定能立即迅速的回应转变
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
大数据是什么:大数据(big data)是指无法在一定时间内用常规软件工具对其内容进行抓取、管理和处理的数据集合。大数据有五大特点,即大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)。它并没有统计学的抽样方法,只是观察和追踪发生的事情。
大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
大数据有什么用?
个人观点:大数据的作用可以帮助世界各个企业根据广泛收集的信息做出决策,以多种多样不同的方式使用,但有一些常见的和基本的方式,商业世界利用大数据集来通知和指导业务流程。
大数据为企业做的一件重要事情就是告诉他们有关客户或客户的信息(数据采集)。使用客户关系管理等工具,大数据集可以显示客户是谁,他们的行为方式以及他们与业务的互动方式。通常,复杂的客户关系管理(CRM)系统在易于使用的可视化界面中提供来自大数据集的精心挖掘的数据,以支持销售或推动其他工作。
大数据通常也会控制企业供应链。大数据集可用于管理库存,处理原材料采购,推动产品出货策略或处理复杂供应链的任何部分。通过使用特定的大数据结果,管理人员可以实施即时库存等策略,从而为企业节省大量资金和资源。
企业还可以使用大数据集来识别性能标准,或者帮助进行劳动力管理。大数据集可以向企业展示更多有关性能趋势以及特定业务位置或成本中心发生的情况。大数据集可以帮助实现业务流程的自动化,实现远程工作和其他新形式的业务运营。
除上述所有内容外,大数据还可以帮助企业设定价格或在市场环境中工作。不同类型的数据收集可以更好地鸟瞰企业在其市场中的表现。专业人士经常谈论大数据应用于业务分析或商业智能。这可能涉及为交易或决策提供背景,并帮助企业联网或帮助提高广告或其他运营效率。
从本质上讲,大数据通过提供一种与现有操作和预测结果有关的调查的无形原材料来服务于业务目标和目标。
“大数据”的四大特点:
据悉,大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(Volume、Variety、Value、Velocity)来概括大数据的特征。
1:是数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
2:是数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
3:是价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
4:是处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
“大数据”的用途
第1:对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据(万物互联)。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。
第2:大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第3:大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
第4:大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
大数据有什么用?
个人观点:大数据的作用可以帮助世界各个企业根据广泛收集的信息做出决策,以多种多样不同的方式使用,但有一些常见的和基本的方式,商业世界利用大数据集来通知和指导业务流程。
大数据为企业做的一件重要事情就是告诉他们有关客户或客户的信息(数据采集)。使用客户关系管理等工具,大数据集可以显示客户是谁,他们的行为方式以及他们与业务的互动方式。通常,复杂的客户关系管理(CRM)系统在易于使用的可视化界面中提供来自大数据集的精心挖掘的数据,以支持销售或推动其他工作。
大数据通常也会控制企业供应链。大数据集可用于管理库存,处理原材料采购,推动产品出货策略或处理复杂供应链的任何部分。通过使用特定的大数据结果,管理人员可以实施即时库存等策略,从而为企业节省大量资金和资源。
企业还可以使用大数据集来识别性能标准,或者帮助进行劳动力管理。大数据集可以向企业展示更多有关性能趋势以及特定业务位置或成本中心发生的情况。大数据集可以帮助实现业务流程的自动化,实现远程工作和其他新形式的业务运营。
除上述所有内容外,大数据还可以帮助企业设定价格或在市场环境中工作。不同类型的数据收集可以更好地鸟瞰企业在其市场中的表现。专业人士经常谈论大数据应用于业务分析或商业智能。这可能涉及为交易或决策提供背景,并帮助企业联网或帮助提高广告或其他运营效率。
从本质上讲,大数据通过提供一种与现有操作和预测结果有关的调查的无形原材料来服务于业务目标和目标。
“大数据”的四大特点:
据悉,大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据集合。”业界通常用4个V(Volume、Variety、Value、Velocity)来概括大数据的特征。
1:是数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB(1PB=210TB),而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
2:是数据类型繁多(Variety)。这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
3:是价值密度低(Value)。价值密度的高低与数据总量的大小成反比。以视频为例,一部1小时的视频,在连续不间断的监控中,有用数据可能仅有一二秒。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
4:是处理速度快(Velocity)。这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
“大数据”的用途
第1:对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据(万物互联)。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
大数据具有催生社会变革的能量。但释放这种能量,需要严谨的数据治理、富有洞见的数据分析和激发管理创新的环境(Ramayya Krishnan,卡内基·梅隆大学海因兹学院院长)。
第2:大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第3:大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
对大数据的分析可以使零售商实时掌握市场动态并迅速做出应对;可以为商家制定更加精准有效的营销策略提供决策支持;可以帮助企业为消费者提供更加及时和个性化的服务;在医疗领域,可提高诊断准确性和药物有效性;在公共事业领域,大数据也开始发挥促进经济发展、维护社会稳定等方面的重要作用。
第4:大数据时代科学研究的方法手段将发生重大改变。例如,抽样调查是社会科学的基本研究方法。在大数据时代,可通过实时监测、跟踪研究对象在互联网上产生的海量行为数据,进行挖掘分析,揭示出规律性的东西,提出研究结论和对策。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询