设函数f(x)可导,且f(x)不等于零,证明:曲线y=f(x)与y=f(x)sinx在交点处相切

 我来答
天罗网17
2022-06-02 · TA获得超过6192个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:73.4万
展开全部
证 有f(x)=sinxf(x) sinx=1 x=pai/2 交点x=2kpai+pai/2 ,令K=0(字数有限)y=f(pai/2) y'1=f'(pai/2) y'2=f'(pai/2)sin(pai/2)+f(pai/2)cos(pai/2)=f'(pai/2)*1+f(pai/2)*0=f'(pai/2)=y'1 所以在交点处相切.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式