在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象顶点为D与y轴交于点C,与x轴交于点A、B,点A在点B
展开全部
绝对正确啊~!!
则两直线斜率相等,可列等式(1),CE=AF,可列等式(2),F在抛物线上,为等式(3),根据这三个等式,即可求出m、n是否存在.
(3)分情况讨论,当圆在x轴上方时,根据题意可知,圆心必定在抛物线的对称轴上,设圆半径为r,则N的坐标为(r+1,r),将其代入抛物线解析式,可求出r的值.当圆在x轴的下方时,方法同上,只是N的坐标变为(r+1,-r),代入抛物线解析式即可求解.
(4)G在抛物线上,代入解析式求出G点坐标,设点P的坐标为(x,y),即(x,x2-2x-3)已知点A、G坐标,可求出线段AG的长度,以及直线AG的解析式,再根据点到直线的距离求出P到直线的距离,即为三角形AGP的高,从而用x表示出三角形的面积,然后求当面积最大时x的值.解答:解:(1)方法一:由已知得:C(0,-3),A(-1,0)(1分)
将A、B、C三点的坐标代入
得 (2分)
解得: (3分)
所以这个二次函数的表达式为:y=x2-2x-3(3分)
方法二:由已知得:C(0,-3),A(-1,0)(1分)
设该表达式为:y=a(x+1)(x-3)(2分)
将C点的坐标代入得:a=1(3分)
所以这个二次函数的表达式为:y=x2-2x-3(3分)
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)方法一:存在,F点的坐标为(2,-3)(4分)
理由:易得D(1,-4),
所以直线CD的解析式为:y=-x-3
∴E点的坐标为(-3,0)(4分)
由A、C、E、F四点的坐标得:AE=CF=2,AE‖CF
∴以A、C、E、F为顶点的四边形为平行四边形
∴存在点F,坐标为(2,-3)(5分)
方法二:易得D(1,-4),所以直线CD的解析式为:y=-x-3
∴E点的坐标为(-3,0)(4分)
∵以A、C、E、F为顶点的四边形为平行四边形
∴F点的坐标为(2,-3)或(-2,-3)或(-4,3)
代入抛物线的表达式检验,只有(2,-3)符合
∴存在点F,坐标为(2,-3)(5分)
(3)如图,①当直线MN在x轴上方时,
设圆的半径为R(R>0),则N(R+1,R),
代入抛物线的表达式,解得 (6分)
②当直线MN在x轴下方时,
设圆的半径为r(r>0),
则N(r+1,-r),
代入抛物线的表达式,
解得 (7分)
∴圆的半径为 或 .(7分)
(4)过点P作y轴的平行线与AG交于点Q,
易得G(2,-3),直线AG为y=-x-1.(8分)
设P(x,x2-2x-3),则Q(x,-x-1),
PQ=-x2+x+2.S△APG=S△APQ+S△GPQ= (-x2+x+2)×3(9分)
当x= 时,△APG的面积最大
此时P点的坐标为( ,- ),S△APG的最大值为 .(10分)
则两直线斜率相等,可列等式(1),CE=AF,可列等式(2),F在抛物线上,为等式(3),根据这三个等式,即可求出m、n是否存在.
(3)分情况讨论,当圆在x轴上方时,根据题意可知,圆心必定在抛物线的对称轴上,设圆半径为r,则N的坐标为(r+1,r),将其代入抛物线解析式,可求出r的值.当圆在x轴的下方时,方法同上,只是N的坐标变为(r+1,-r),代入抛物线解析式即可求解.
(4)G在抛物线上,代入解析式求出G点坐标,设点P的坐标为(x,y),即(x,x2-2x-3)已知点A、G坐标,可求出线段AG的长度,以及直线AG的解析式,再根据点到直线的距离求出P到直线的距离,即为三角形AGP的高,从而用x表示出三角形的面积,然后求当面积最大时x的值.解答:解:(1)方法一:由已知得:C(0,-3),A(-1,0)(1分)
将A、B、C三点的坐标代入
得 (2分)
解得: (3分)
所以这个二次函数的表达式为:y=x2-2x-3(3分)
方法二:由已知得:C(0,-3),A(-1,0)(1分)
设该表达式为:y=a(x+1)(x-3)(2分)
将C点的坐标代入得:a=1(3分)
所以这个二次函数的表达式为:y=x2-2x-3(3分)
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)方法一:存在,F点的坐标为(2,-3)(4分)
理由:易得D(1,-4),
所以直线CD的解析式为:y=-x-3
∴E点的坐标为(-3,0)(4分)
由A、C、E、F四点的坐标得:AE=CF=2,AE‖CF
∴以A、C、E、F为顶点的四边形为平行四边形
∴存在点F,坐标为(2,-3)(5分)
方法二:易得D(1,-4),所以直线CD的解析式为:y=-x-3
∴E点的坐标为(-3,0)(4分)
∵以A、C、E、F为顶点的四边形为平行四边形
∴F点的坐标为(2,-3)或(-2,-3)或(-4,3)
代入抛物线的表达式检验,只有(2,-3)符合
∴存在点F,坐标为(2,-3)(5分)
(3)如图,①当直线MN在x轴上方时,
设圆的半径为R(R>0),则N(R+1,R),
代入抛物线的表达式,解得 (6分)
②当直线MN在x轴下方时,
设圆的半径为r(r>0),
则N(r+1,-r),
代入抛物线的表达式,
解得 (7分)
∴圆的半径为 或 .(7分)
(4)过点P作y轴的平行线与AG交于点Q,
易得G(2,-3),直线AG为y=-x-1.(8分)
设P(x,x2-2x-3),则Q(x,-x-1),
PQ=-x2+x+2.S△APG=S△APQ+S△GPQ= (-x2+x+2)×3(9分)
当x= 时,△APG的面积最大
此时P点的坐标为( ,- ),S△APG的最大值为 .(10分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询