什么叫差分,差分方程是啥?
展开全部
差分方程是微分方程的离散化.一个微分方程不一定可以解出精确的解,把它变成差分方程,就可以求出近似的解来.
比如 dy+y*dx=0,y(0)=1 是一个微分方程,x取值[0,1]
(注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
这样上述微分方程可以离散化为:
差分方程
y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0,k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了.
比如 dy+y*dx=0,y(0)=1 是一个微分方程,x取值[0,1]
(注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
这样上述微分方程可以离散化为:
差分方程
y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0,k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询