利用函数的单调性与函数的极值证明不等式,当x>4时,2^x>x^2 我来答 1个回答 #热议# 发烧为什么不能用酒精擦身体来退烧? 大沈他次苹0B 2022-05-20 · TA获得超过7344个赞 知道大有可为答主 回答量:3059 采纳率:100% 帮助的人:180万 我也去答题访问个人页 关注 展开全部 首先,证明函数的单调性,设x2>x1>4f1(x)=2^xf1(x2)-f1(x1)=2^x2-2^x1=2^x1(2^x2/2^x1-1)=2^x1*[2^(x2-x1)-1]因为x2>x1>4,所以2^(x2-x1)>2^0=1则 f1(x2)-f1(x1)>0,函数f1(x)=2^x 在x>4时为单调增函数,最小值为2^4=16再... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: