拉氏反变换公式是什么?

 我来答
小熊玩科技gj
高能答主

2022-02-16 · 世界很大,慢慢探索
知道大有可为答主
回答量:2.2万
采纳率:100%
帮助的人:571万
展开全部

拉氏反变换公式是L[f(x)]=∫f(x)e^(-st)dt。

解释分析:拉氏反变换公式是L[f(x)]=∫f(x)e^(-st)dt;拉氏变换是一个线性变换,可将一个有参数实数t(t≥0)的函数转换为一个参数为复数s的函数。

函数变换对和运算变换性质利用定义积分,很容易建立起原函数f(t)和象函数F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。

F(s)和f(t)间的关系由下面定义的积分所确定:

如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式