用中值定理证明下列不等式:e^x>xe(x>1)
1个回答
展开全部
证明:函数f(t)=e^t在[1,x]满足中值定理的条件
于是必定存在ξ∈(1,x),有f ' (ξ)=(e^x- e)/(x-1) = e^ξ> e
即 e^x- e > e(x-1)
整理即得结论
于是必定存在ξ∈(1,x),有f ' (ξ)=(e^x- e)/(x-1) = e^ξ> e
即 e^x- e > e(x-1)
整理即得结论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |