常微分方程求解 ydx-xdy=x^2ydy
1个回答
展开全部
凑全微分 原方程化为 [y/x^2]dx-[(1/x)+y]dy=0
可以验证它是exact的 可设fx=y/x^2 fy=-[(1/x)+y] 所以 f=-y/x+g(y) 且g'(y)=fy+1/x=-y 那么
g(y)=-1/2y^2+C 所以 通解为 y/x +[1/2]y^2=C
可以验证它是exact的 可设fx=y/x^2 fy=-[(1/x)+y] 所以 f=-y/x+g(y) 且g'(y)=fy+1/x=-y 那么
g(y)=-1/2y^2+C 所以 通解为 y/x +[1/2]y^2=C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询