对称轴的概念是什么及常见轴对称图形
对称轴的概念
先引入点关于直线对称的概念:如果点A、B在直线 的两侧,且 是线段AB的垂直平分线,则称点A、B关于直线 互相对称,点A、B互称为关于直线 的对称点,直线 叫做对称轴。
定义一
在平面上,如果图形F的所有点关于平面上的直线 成轴对称,直线 叫做图形下的对称轴。
定义二
在平面上,如果存在一条直线 ,图形F的所有点关于直线 的对称点组成的图形。仍是图形F自身,则称图形F为轴对称图形,直线 己它的一条对称轴。
图1中的三个图形分别有两条、一条、四条对称轴。
常见轴对称图形
几种常见的轴对称图形和中心对称图形:
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆、双曲线(有两条对称轴)、椭圆(有两条对称轴)、抛物线(有一条对称轴)等。
对称轴的`条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段 、平行四边形、菱形、矩形、正方形、圆等。
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点;圆的对称中心是圆心。
说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。
坐标系中的轴对称变换与中心对称变换:
点P(x,y)关于x轴对称的点P的坐标为(x,-y),关于y轴对称的点P的坐标为(-x,y)。关于原点对称的点的坐标P3的坐标是(-x,-y)这个规律也可以记为:关于y轴(x轴)对称的点的纵坐标(横坐标)相同,横坐标(纵坐标)互为相反数。 关于原点成中心对称的点的,横坐标为原横坐标的相反数,纵坐标为原纵坐标的相反数,即横坐标、纵坐标同乘以-1。
常见的对称轴
①线段有两条对称轴,是这条线段的垂直平分线和线段所在的直线。
②角有一条对称轴,是角平分线所在的直线。
③等腰三角形有一条对称轴,是顶角平分线所在的直线。
④等边三角形有三条对称轴,分别是三个顶角平分线所在的直线。
⑤矩形有两条对称轴,是相邻两边的垂直平分线。
⑥正方形有四条对称轴,是相邻两边的垂直平分线和对角线所在的直线。
⑦菱形有两条对称轴,是对角线所在的直线。
⑧等腰梯形有一条对称轴,是两底垂直平分线。
⑨正多边形有与边数相同条的对称轴。
⑩圆有无数条对称轴,是任何一条直径所在的直线。