2个回答
展开全部
任意n阶行列式都存在对角线法则不对。对角线法则只存在于二阶和三阶的行列式。
萨鲁斯法则(Sarrus rule)是展开二阶和三阶行列式的方法,萨鲁斯法则可以表述为二、三阶行列式等于主对角线上元素的乘积减去次对角线上元素的乘积,并称为二、三阶行列式的对角线法则。
在n阶行列式D=|aij|中,从左上角到右下角称为D的主对角线,元素a11,a22,…,ann称为主对角线上的元素,简称主对角元;从右上角到左下角称为D的次对角线,而元素a1n,a2,n-1,…,an1称为次对角线上的元素,简称次对角元,因而,萨鲁斯法则亦称对角线法则。
n阶行列式的性质:
性质1 行列互换,行列式不变。
性质2 把行列式中某一行(列)的所有元素都乘以一个数K,等于用数K乘以行列式。
性质3 如果行列式的某行(列)的各元素是两个元素之和,那么这个行列式等于两个行列式的和。
性质4 如果行列式中有两行(列)相同,那么行列式为零。(所谓两行(列)相同就是说两行(列)的对应元素都相等)
性质5 如果行列式中两行(列)成比例,那么行列式为零。
性质6 把一行(列)的倍数加到另一行(列),行列式不变。
性质7 对换行列式中两行(列)的位置,行列式反号。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
对角线法则只存在于二阶和三阶的行列式。
萨鲁斯法则(Sarrus rule)是展开二阶和三阶行列式的方法,萨鲁斯法则可以表述为二、三阶行列式等于主对角线上元素的乘积减去次对角线上元素的乘积,并称为二、三阶行列式的对角线法则。 [1] 在n阶行列式D=|aij|中,从左上角到右下角称为D的主对角线,元素a11,a22,…,ann称为主对角线上的元素,简称主对角元;从右上角到左下角称为D的次对角线,而元素a1n,a2,n-1,…,an1称为次对角线上的元素,简称次对角元,因而,萨鲁斯法则亦称对角线法则。
二阶和三阶行列式按图《二阶行列式按萨鲁斯法则展开》所示进行计算:实线上的元素的乘积带有正号,虚线上的元素的乘积带有负号,并将这些乘积相加,得到二阶与三阶行列式的展开式。
只有二阶和三阶行列式具有萨鲁斯法则,四阶及以上的行列式不存在萨鲁斯法则。
希望我能帮助你解疑释惑。
萨鲁斯法则(Sarrus rule)是展开二阶和三阶行列式的方法,萨鲁斯法则可以表述为二、三阶行列式等于主对角线上元素的乘积减去次对角线上元素的乘积,并称为二、三阶行列式的对角线法则。 [1] 在n阶行列式D=|aij|中,从左上角到右下角称为D的主对角线,元素a11,a22,…,ann称为主对角线上的元素,简称主对角元;从右上角到左下角称为D的次对角线,而元素a1n,a2,n-1,…,an1称为次对角线上的元素,简称次对角元,因而,萨鲁斯法则亦称对角线法则。
二阶和三阶行列式按图《二阶行列式按萨鲁斯法则展开》所示进行计算:实线上的元素的乘积带有正号,虚线上的元素的乘积带有负号,并将这些乘积相加,得到二阶与三阶行列式的展开式。
只有二阶和三阶行列式具有萨鲁斯法则,四阶及以上的行列式不存在萨鲁斯法则。
希望我能帮助你解疑释惑。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询