1/cosx的不定积分是多少?
展开全部
具体回答如下:
secx=1/cosx
∫secxdx=∫1/cosxdx=∫1/(cosx的平方)dsinx=∫1/(1-sinx的平方)dsinx
令sinx=t代人可得:
原式=∫1/(1-t^2)dt=1/2∫[1/(1-t)+1/(1+t)]dt=1/2∫1/(1-t)dt+1/2∫1/(1+t)dt=-1/2ln(1-t)+1/2ln(1+t)+C
将t=sinx代人可得:
原式=[ln(1+sinx)-ln(1-sinx)]/2+C
不定积分的意义:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询