已知数列{an}满足递推公式an=2(an-1)+1,(n>=2),其中a4=15 求数列{an}的前n项和Sn.

 我来答
黑科技1718
2022-06-23 · TA获得超过5898个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.7万
展开全部
an=2a(n-1)+1
an+1=2a(n-1)+2=2[a(n-1)+1]
(an+1)/[a(n-1)+1]=2
所以an+1是等比数列,q=2
所以 an+1=(a1+1)*q^(n-1)
a4+1=(a1+1)*q^(4-1)
16=(a1+1)*8
a1+1=2
所以
an+1=(a1+1)*q^(n-1)=2*2^(n-1)=2^n
an=-1+2^n
Sn=-1+2^1-1+2^2+……+(-1+2^n)
=-1*n+(2^1+……+2^n)
=-n+2*(1-2^n)/(1-2)
=-n+2^(n+1)-2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式