高数 求函数极值 f(x,y)=x^2+y^3-6xy+18x-39y+16

 我来答
舒适还明净的海鸥i
2022-05-21 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:70.2万
展开全部
由fx(x,y)=2x-6y+18=0fy(x,y)=3y^2-6x-39=0解得驻点有(-6,1)(-6,5)(6,1)(6,5)二阶偏导fxx(x,y)=2fxy(x,y)=-6fyy(x,y)=6y在(-6,1)处,△0 fxx(x,y)=2>0所以f(-6,5)是极小值为-90在(6,1)处,△0 fxx(x,y)=2>0所以f(6,5)...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式