三角函数的公式大全
1积化和差公式。sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]
2、和差化积公式。sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
3三倍角公式。sin3α=3sinα-4sin^3α:cos3α=4cos^3α-3cosα
4两角和与差的三角函数关系sin(α+β)=sinαcosβ+cosαsinβ;sin(α-β)=sinαcosβ-cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角函数是数学考试中一个很重要的知识点,学好三角函数要牢记公式,下面整理了三角函数的公式,希望能帮助到大家。
倍角公式
1、二倍角公式
正弦形式:sin2α=2sinαcosα
正切形式:tan2α=2tanα/(1-tan^2(α))
余弦形式:cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
2、三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
3、四倍角公式
sin4A=-4*(cosA*sinA*(2*sinA^2-1))
cos4A=1+(-8*cosA^2+8*cosA^4)
tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
半角公式
1、正弦
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
2、余弦
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
3、正切
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
积化和差
sina*cosb=[sin(a+b)+sin(a-b)]/2
cosa*sinb=[sin(a+b)-sin(a-b)]/2
cosa*cosb=[cos(a+b)+cos(a-b)]/2
sina*sinb=[cos(a-b)-cos(a+b)]/2
和差化积
sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]
sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]
cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]
cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]
诱导公式
1、任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
2、设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
4、设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
5、利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)