为什么三角函数可以展开成指数?
高等代数中使用欧拉公式将三角函数转换为指数(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
cosα=1/2[e^(iα)+e^(-iα)]
sinα=-i/2[e^(iα)-e^(-iα)]
泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。
扩展资料
三角函数与欧拉定理:
假设生产函数为:Q=f(L.K)(即Q为齐次生产函数),定义人均资本k=K/L
方法1:根据齐次生产函数中不同类型的生产函数进行分类讨论
(1)线性齐次生产函数
n=1,规模报酬不变,因此有:
Q/L=f(L/L,K/L)=f(1,k)=g(k)
k为人均资本,Q/L为人均产量,人均产量是人均资本k的函数。
让Q对L和K求偏导数,有:
∂Q/∂L=∂[L*g(k)]/∂L=g(k)+L*[dg(k)/dk]*[dk/dL]=g(k)+L*g’(k)*(-K/)=g(k)-k*g’(k)
∂Q/∂K=∂[L*g(k)]/ ∂K=L*[∂g(k)/∂k]=L*[dg(k)/dk]*[∂k/∂K]=L*g’(k)*(1/L)=g’(k)
由上面两式,即可得欧拉分配定理:
L*[∂Q/∂L]+K*[∂Q/∂K]=L*[g(k)-k*g’(k)]+K*g’(k)=L*g(k)-K*g’(k)+K*g’(k)=L*g(k)=Q
参考资料:百度百科—欧拉定理