对数函数的底数能为负数吗?
展开全部
指数是可以以负数为底的.比如(-2)^2;但是函数是不一样的.如果指数函数的底可以是负数的话,那么它的定义域就无法确定(负数的指数不能为1/2,1/4,1/6等等),那么所有的指数函数就无法系统的研究它的性质因为没有规律性,所以规定指数函数的底必须为正实数.
真数没有限制,限制的是底数。这个涉及到函数定义域和值域的取值范围。基本上高中接触的函数定义域和值域最大也就是实数集。举个指数函数的例子(对数函数不好理解):假如底数为-2,指数为1/2,那么幂是多少?答案是根号负二。请注意啊,实数范围内是没有负数的平方根的。因此指数函数的底数必须是正数,作为指数函数的反函数,对数函数当然也要有这种规定了。当然了如果硬要问个究竟,那复变函数了解一下。
指数函数
一般的,形如
其中 a 叫做底数, a>0且 a≠1 ,x叫做指数,是函数的自变量,取值范围x∈R。也许你会好奇的问,为何底数a 不能取1或者负数,如果a=1,此时原函数就是一个常数函数 ; 而当 a 取负数的时候,我们来看一个特殊情况
做出图形如下
从图形来看,随着自变量 x 的 增加,因变量y 在 -1 和 1 之间来回震荡,这对函数的影响极其恶劣,甚至造成函数的不连续性,为后续的研究带来很多麻烦,所以才人为规定底数不能为负数,并不是说指数函数底数原生不能为负数。 指数函数的性质从图形来看,随着自变量 x 的 增加,因变量y 在 -1 和 1 之间来回震荡,这对函数的影响极其恶劣,甚至造成函数的不连续性,为后续的研究带来很多麻烦,所以才人为规定底数不能为负数,并不是说指数函数底数原生不能为负数。 指数函数的性质
在明确长什么样的是指数函数之后,我们要对指数函数的性质进行探讨,分为 01两种情况并结合图像来讨论
从图像看到此时指数函数具备如下性质
自变量可以取实数R中任意值,函数值取遍
减函数,即随着自变量 x的增加,函数值反而减少,最后无限接近x轴
过固定点(0, 1)
函数图像向右下倾斜,且越来越平缓
(2)当 a>1时
自变量可以取实数R中任意值,函数值取遍
增函数,即随着自变量 x 的增加,函数值也在增加,最后走向无穷大
过固定点(0, 1)
函数图像向右上峭,且越来越陡
指数函数的运算法则
我们把m,n当成一些整数就很好理解了,第一个表示 m个 a相乘后的积再与n个a相乘的积作乘法,写出来就是
第一个等式后面的第一个等式括号里面有m 个 a,第二个括号里面有 n 个 a,第二个等式后面有 m+n个 a。第二个和第三个也可以用同样的办法来解释,最后重点解释一下
假设,现在让等式两边同时作n次方运算,根据性质3,等式左边,而等式右边为,于是,两边再开n次方,得到 。如果你不想记住这些运算法则,那么你可以让a,m,n取一些特殊值来找规律
真数没有限制,限制的是底数。这个涉及到函数定义域和值域的取值范围。基本上高中接触的函数定义域和值域最大也就是实数集。举个指数函数的例子(对数函数不好理解):假如底数为-2,指数为1/2,那么幂是多少?答案是根号负二。请注意啊,实数范围内是没有负数的平方根的。因此指数函数的底数必须是正数,作为指数函数的反函数,对数函数当然也要有这种规定了。当然了如果硬要问个究竟,那复变函数了解一下。
指数函数
一般的,形如
其中 a 叫做底数, a>0且 a≠1 ,x叫做指数,是函数的自变量,取值范围x∈R。也许你会好奇的问,为何底数a 不能取1或者负数,如果a=1,此时原函数就是一个常数函数 ; 而当 a 取负数的时候,我们来看一个特殊情况
做出图形如下
从图形来看,随着自变量 x 的 增加,因变量y 在 -1 和 1 之间来回震荡,这对函数的影响极其恶劣,甚至造成函数的不连续性,为后续的研究带来很多麻烦,所以才人为规定底数不能为负数,并不是说指数函数底数原生不能为负数。 指数函数的性质从图形来看,随着自变量 x 的 增加,因变量y 在 -1 和 1 之间来回震荡,这对函数的影响极其恶劣,甚至造成函数的不连续性,为后续的研究带来很多麻烦,所以才人为规定底数不能为负数,并不是说指数函数底数原生不能为负数。 指数函数的性质
在明确长什么样的是指数函数之后,我们要对指数函数的性质进行探讨,分为 01两种情况并结合图像来讨论
从图像看到此时指数函数具备如下性质
自变量可以取实数R中任意值,函数值取遍
减函数,即随着自变量 x的增加,函数值反而减少,最后无限接近x轴
过固定点(0, 1)
函数图像向右下倾斜,且越来越平缓
(2)当 a>1时
自变量可以取实数R中任意值,函数值取遍
增函数,即随着自变量 x 的增加,函数值也在增加,最后走向无穷大
过固定点(0, 1)
函数图像向右上峭,且越来越陡
指数函数的运算法则
我们把m,n当成一些整数就很好理解了,第一个表示 m个 a相乘后的积再与n个a相乘的积作乘法,写出来就是
第一个等式后面的第一个等式括号里面有m 个 a,第二个括号里面有 n 个 a,第二个等式后面有 m+n个 a。第二个和第三个也可以用同样的办法来解释,最后重点解释一下
假设,现在让等式两边同时作n次方运算,根据性质3,等式左边,而等式右边为,于是,两边再开n次方,得到 。如果你不想记住这些运算法则,那么你可以让a,m,n取一些特殊值来找规律
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询