已知f[(1-x)/(1+x)]=(1-x^2)/(1+x^2),求f(x)解析式

 我来答
新科技17
2022-07-25 · TA获得超过5912个赞
知道小有建树答主
回答量:355
采纳率:100%
帮助的人:75.5万
展开全部
设t=(1-x)/(1+x) 则可得 x=(1-t)/(1+t) 把x代入 f[(1-x)/(1+x)]=(1-x^2)/(1+x^2)中 可得 f(t)={1-[(1-t)/(1+t)]^2}/{1+[(1-t)/(1+t)]^2} =[4t/(1+t)^2]/[(2t^2+2)/(1+t)^2] =2t/(1+t^2) 所以 f(x)=2x/(1+x^2)...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式