a,b属于R+,且a+b=1,求证:(a+1/a)^2+(b+1/b)^2>=25/2
展开全部
(a+1/a)^2+(b+1/b)^2
=a^2+1/a^2+2 +b^2+1/b^2+2
=(a^2+b^2) + (1/a^2+1/b^2) +4
>=0.5*(a+b)^2 +0.5*(1/a +1/b)^2 +4
=0.5+ 0.5*(1/a +1/b)^2+4
=4.5+0.5*(1/a+1/b)^2
因为ab<=0.25*(a+b)^2=0.25,
所以1/a+1/b=(a+b)/ab=1/ab >=4;
(1/a +1/b)^2>=16
所以(a+1/a)^2+(b+1/b)^2>=4.5+0.5*16=25/2
=a^2+1/a^2+2 +b^2+1/b^2+2
=(a^2+b^2) + (1/a^2+1/b^2) +4
>=0.5*(a+b)^2 +0.5*(1/a +1/b)^2 +4
=0.5+ 0.5*(1/a +1/b)^2+4
=4.5+0.5*(1/a+1/b)^2
因为ab<=0.25*(a+b)^2=0.25,
所以1/a+1/b=(a+b)/ab=1/ab >=4;
(1/a +1/b)^2>=16
所以(a+1/a)^2+(b+1/b)^2>=4.5+0.5*16=25/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询