数学期望怎么求
1个回答
展开全部
一:抽球类问题数学期望
E=n*E1
注:E为数学期望,E1为抽一次球的数学期望,n为抽的次数
例:有完全相同的黑球,白球,红球共15个,其中黑7个,白3个,黑5个
则抽5次抽到黑球的个数的数学期望E=5*(5/15)=5/3
衍生问题还有抽人,抽产品等
二:遇红灯问题数学期望
E=P1+P2+……..
注:P为概率,E为相应所有P的和
例:小红去学校的路上有4个红灯,遇第1个红灯的概率为0.5,第2个的为0.35,第3个的为0.65,第4个的为0.23(遇红灯是互相独立的,互不影响的)
则小红在一次去学校的路上遇到的红灯的数学期望E=0.5+0.35+0.65+0.23=1.73
衍生问题有很多
三:三局两胜制问题的局数期望
E=2(1+P1*P2)
注:E为局数期望,P1,P2为两队或两人的获胜的概率(P1+P2=1)
例:甲和乙下棋,甲赢的概率为0.45,乙赢的概率为0.55
则他们三局两胜的局数期望E=2(1+0.45*0.55)=2.495
衍生问题多见于比赛中
E=n*E1
注:E为数学期望,E1为抽一次球的数学期望,n为抽的次数
例:有完全相同的黑球,白球,红球共15个,其中黑7个,白3个,黑5个
则抽5次抽到黑球的个数的数学期望E=5*(5/15)=5/3
衍生问题还有抽人,抽产品等
二:遇红灯问题数学期望
E=P1+P2+……..
注:P为概率,E为相应所有P的和
例:小红去学校的路上有4个红灯,遇第1个红灯的概率为0.5,第2个的为0.35,第3个的为0.65,第4个的为0.23(遇红灯是互相独立的,互不影响的)
则小红在一次去学校的路上遇到的红灯的数学期望E=0.5+0.35+0.65+0.23=1.73
衍生问题有很多
三:三局两胜制问题的局数期望
E=2(1+P1*P2)
注:E为局数期望,P1,P2为两队或两人的获胜的概率(P1+P2=1)
例:甲和乙下棋,甲赢的概率为0.45,乙赢的概率为0.55
则他们三局两胜的局数期望E=2(1+0.45*0.55)=2.495
衍生问题多见于比赛中
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询