设z=f(x,y),由F(x+y+z,x^2+y^2+z^2)=0确定,其中F可微,求:z对x的偏导
展开全部
因为z=f(x,y)由F(x+y+z,x^2+y^2+z^2)=0确定,
F(x+y+z,x^2+y^2+z^2)=0两边对x求导:F_1 (1+z_x)+F_2 (2x +2z*z_x)=0
所以:z_x={F_1 +2x* F_2 }/{F_1 +2z*F_2 }
={F_1 +2x* F_2 }/{F_1 +2 f*F_2 }
其中F_1表示F对第一个变量求导,F_2表示F对第二个变量求导,F_1的写全就是F_1 (x+y+z,x^2+y^2+z^2),F_2写全就是F_2 (x+y+z,x^2+y^2+z^2).
F(x+y+z,x^2+y^2+z^2)=0两边对x求导:F_1 (1+z_x)+F_2 (2x +2z*z_x)=0
所以:z_x={F_1 +2x* F_2 }/{F_1 +2z*F_2 }
={F_1 +2x* F_2 }/{F_1 +2 f*F_2 }
其中F_1表示F对第一个变量求导,F_2表示F对第二个变量求导,F_1的写全就是F_1 (x+y+z,x^2+y^2+z^2),F_2写全就是F_2 (x+y+z,x^2+y^2+z^2).
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询