
求不定积分:(x*arctanx)/[(1+x^2)^3] 希望有过程.
1个回答
展开全部
∫(x*arctanx)/[(1+x^2)^3]dx=∫(1/2)(arctanx)/[(1+x^2)^3]d(x^2+1)=∫(1/2)(arctanx)(-1/2)d[(x^2+1)^(-2)]=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)d(arctanx)=(-1/4)arctanx/(x^2+1)^2+(1/4)∫(x^2+1)^(-2)...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-04-21 广告
积分球是一个内壁涂有白色漫反射材料的空腔球体,又称光度球,光通球等。 球壁上开一个或几个窗孔,用作进光孔和放置光接收器件的接收孔。积分球的内壁应是良好的球面,通常要求它相对于理想球面的偏差应不大于内径的0.2%。球内壁上涂以理想的漫反射材料...
点击进入详情页
本回答由上海蓝菲提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询