四阶常系数齐次线性微分方程通解是什么?
1个回答
展开全部
四阶常系数齐次线性微分方程:y^(4)-2y^(3)+5y^(2)-8y^(1)+4y=0
通解:(C1+C2t)e^t+C3cos2t+C4sin2t=0
解题思路:特征根的表得知
由te^t知两个一样的解
知(C1+C2t)e^t
另外一个知C3cos2t+C4sin2t
知(r-1)^2(r^2+4)
所以,该四阶常系数齐次线性微分方程为y^(4)-2y^(3)+5y^(2)-8y^(1)+4y=0
通解是:(C1+C2t)e^t+C3cos2t+C4sin2t=0
扩展资料
线性微分方程表达式:
线性微分方程的一般形式是:
其中D是微分算子d/dx(也就是Dy = y',D2y = y",……)。
把对应的齐次方程的补函数加上非齐次方程本身的一个特解,便可以得到非齐次方程的另外一个解。如果是常数,那么方程便称为常系数线性微分方程。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询