单纯形方法详细资料大全

 我来答
天然槑17
2022-10-31 · TA获得超过1.1万个赞
知道大有可为答主
回答量:6100
采纳率:100%
帮助的人:33.6万
展开全部

单纯形方法是用线性代数解联立方程所用的叠代法求最优解的方法,是线性规划问题的基本算法。它和代数学中解线性联立方程组的高斯消去法极为相似。

基本介绍

  • 中文名 :单纯形方法
  • 外文名 :Simplex method
  • 定义 :直接、快速的搜寻最小值方法
  • 特点 :收敛速度快,适用面较广
  • 领域 :目标函式的解析性
  • 学科 :数学
简介,基本思想,解题步骤,最最佳化过程,

简介

由George Dantzig发明的单纯形法(simplex algorithm)在数学最佳化领域中常用于线性规划问题的数值求解。 Nelder-Mead 法或称下山单纯形法,与单纯形法名称相似,但二者关联不大。该方法由Nelder和Mead于1965年发明,是用于最佳化多维无约束问题的一种数值方法,属于更普遍的搜寻算法的类别。这两种方法都使用了单纯形的概念。单纯形是N维中的N+1个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体等等,都是单纯形。

基本思想

它的基本思想是:采取逐步接近最优解的办法,先求出一个可行解,但它未必是最优者,然后逐步改善可行解,使目标函式值逐步增大(或减小),直到目标函式达到极值(最大值或最小值)时,该问题就得到了最优解,或判断无最优解。

解题步骤

单纯形法的一般解题步骤可归纳如下: 1.把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。 2.若基本可行解不存在,即约束条件有矛盾,则问题无解。 3.若基本可行解存在,从初始基可行解作为起点,根据最优性条件和可行性条件,引入非基变数取代某一基变数,找出目标函式值更优的另一基本可行解。 4.按步骤3进行叠代,直到对应检验数满足最优性条件(这时目标函式值不能再改善),即得到问题的最优解。 5.若叠代过程中发现问题的目标函式值无界,则终止叠代。

最最佳化过程

如果b向量所有元素非负,则显然我们只需要令所有的变数等于0,就可以得到一个可行解。在这种情况下,通过下述最最佳化过程,我们可以得到该线性规划的最优解,或者指出该线性规划的最优解为无穷大(不存在)。
  1. 任取一个非基变数xe,使得ce>0。
  2. 选取一个基变数xd,使得Ad,e>0,且最小化bd/Ad。
  3. 执行转轴操作pivot(d, e),并转到第一步继续算法。
根据bd/Ad的最小性不难证明pivot(d, e)不会破坏b的非负性。因此将所有变数取0值仍然是可行解。同时,根据Δv=ce(bd/Ad),e≥0,我们发现v一定是不降的。这就达到了更新解的目的。 不难发现,算法终止有两种情况:
  1. 对于所有的非基变数,c均非正。
  2. 对于某一个e,所有的Ad均非正。
可以证明,对于第一种情况,我们已经得到了该线性规划的最优解。当前的v即为答案。严格证明比较复杂,但是直观上是很容易理解的。因为所有的非基变数都是非负的,而所有的c都是非正的,因此只要某个非基变数不为0,就会使得目标函式更小。 对于第二种情况来说,很容易证明此时线性规划的最优解是无穷大。只要让其他所有变数均为0,变数xe为正无穷。由于所有的Ad都非正,因此非基变数的非负性得到保证。同时由于ce>0,目标函式值为正无穷。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式