单纯形方法详细资料大全
1个回答
展开全部
单纯形方法是用线性代数解联立方程所用的叠代法求最优解的方法,是线性规划问题的基本算法。它和代数学中解线性联立方程组的高斯消去法极为相似。
基本介绍
- 中文名 :单纯形方法
- 外文名 :Simplex method
- 定义 :直接、快速的搜寻最小值方法
- 特点 :收敛速度快,适用面较广
- 领域 :目标函式的解析性
- 学科 :数学
简介
由George Dantzig发明的单纯形法(simplex algorithm)在数学最佳化领域中常用于线性规划问题的数值求解。 Nelder-Mead 法或称下山单纯形法,与单纯形法名称相似,但二者关联不大。该方法由Nelder和Mead于1965年发明,是用于最佳化多维无约束问题的一种数值方法,属于更普遍的搜寻算法的类别。这两种方法都使用了单纯形的概念。单纯形是N维中的N+1个顶点的凸包,是一个多胞体:直线上的一个线段,平面上的一个三角形,三维空间中的一个四面体等等,都是单纯形。基本思想
它的基本思想是:采取逐步接近最优解的办法,先求出一个可行解,但它未必是最优者,然后逐步改善可行解,使目标函式值逐步增大(或减小),直到目标函式达到极值(最大值或最小值)时,该问题就得到了最优解,或判断无最优解。解题步骤
单纯形法的一般解题步骤可归纳如下: 1.把线性规划问题的约束方程组表达成典范型方程组,找出基本可行解作为初始基可行解。 2.若基本可行解不存在,即约束条件有矛盾,则问题无解。 3.若基本可行解存在,从初始基可行解作为起点,根据最优性条件和可行性条件,引入非基变数取代某一基变数,找出目标函式值更优的另一基本可行解。 4.按步骤3进行叠代,直到对应检验数满足最优性条件(这时目标函式值不能再改善),即得到问题的最优解。 5.若叠代过程中发现问题的目标函式值无界,则终止叠代。最最佳化过程
如果b向量所有元素非负,则显然我们只需要令所有的变数等于0,就可以得到一个可行解。在这种情况下,通过下述最最佳化过程,我们可以得到该线性规划的最优解,或者指出该线性规划的最优解为无穷大(不存在)。- 任取一个非基变数xe,使得ce>0。
- 选取一个基变数xd,使得Ad,e>0,且最小化bd/Ad。
- 执行转轴操作pivot(d, e),并转到第一步继续算法。
- 对于所有的非基变数,c均非正。
- 对于某一个e,所有的Ad均非正。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询